THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA **CERTIFICATE OF SECONDARY EDUCATION EXAMINATION**

032/2B

CHEMISTRY 2B PRACTICAL B

(For Both School and Private Candidates)

Time: 2:30 Hours

Year: 2020

Instructions

This paper consists of two (2) questions. Answer all the questions. 1.

- Each question carries twenty five (25) marks. 2.
- Cellular phones and any unauthorised materials are not allowed in the examination room. 3.
- Write your **Examination Number** on every page of your answer booklet(s). 4.
- 5. You may use the following constants: Atomic masses: H=1, C=12, O=16, Na = 23, S = 32. $1 \text{ litre} = 1 \text{ dm}^3 = 1000 \text{ cm}^3$.

An impure sulphuric acid has been purchased for use in Chemistry laboratory. A solution was made by dissolving 7.0 g of the impure acid in distilled water to make 1 dm³ of the solution and labelled K. You are required to determine the purity of the sulphuric acid, using a solution L made by dissolving 4.0 g of sodium hydroxide in distilled water to make 1 dm³ of solution. Follow the procedures below and then answer the questions that follow:

Procedure

- (i) Put the impure acid, **K** into a burette.
- (ii) Titrate the impure acid, K against solution L using two drops of (POP) or methyl orange (MO) indicator. Obtain three titre values.
- (iii) Record your results in tabular form.

Questions

- (a) Why both phenolphthalein (POP) and methyl orange (MO) indicator are suitable for this titration?
- (b) How much volume of the acid was required for complete neutralization reaction with 25 cm³ or 20 cm³ of the base?
- (c) Write a balanced chemical equation for this reaction.
- (d) Calculate the molarity of the acid and the base.
- (e) Calculate the percentage purity of the acid.
- 2. You are provided with the following:
 - N_1 : 0.13 M sodium thiosulphate;
 - N_2 : 2.0 M hydrochloric acid;
 - N₃: Distilled water;

Stop watch;

A piece of white paper.

Procedure

- (i) Place a 100 cm³ beaker on top of letter \mathbf{X} such that the letter \mathbf{X} is visible when viewed from above.
- (ii) Measure 2 cm³ of N_1 and 8 cm³ of N_3 using 10 cm³ measuring cylinder and pour them into the beaker in (i).
- (iii) Using another 10 cm³ measuring cylinder measure 10 cm³ of N_2 and pour into the 100 cm³ beaker containing N_1 and N_3 and immediately start the stop watch/clock.
- (iv) Swirl the content, observe it from above and record the time taken for letter \mathbf{X} to disappear completely.
- (v) Repeat steps (i) (iv) by varying the volume of N_1 and N_3 as indicated in the following table:

Table: Experimental Data

Volume of N ₁ (cm ³)	Volume of N ₃ (cm ³)	Volume of N ₂ (cm ³)	Time (s)
2	8	10	
4	6	10	
6	4	10	
8	2	10	
10	0	10	

Questions

- (a) Complete filling the Table.
- (b) (i) Plot a graph of volume of N_1 (vertical axis) against time (horizontal axis) taken for the letter **X** to disappear completely.
 - (ii) What does the shape of the graph indicate?
- (c) Why did the letter **X** disappear?
- (d) Write the electronic configuration of the product which causes the solution to be cloudy (milky).
- (e) Write the ionic equation for the reaction between N_1 and N_2 .
- (f) Why N_3 was added to N_1 ?